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ABSTRACT

We present a computational scheme to locally align a
collection of RNA sequences using sequence and
structure constraints. In addition, the method
searches for the resulting alignments with the most
significant common motifs, among all possible collec-
tions. The first part utilizes a simplified version of the
Sankoff algorithm for simultaneous folding and align-
ment of RNA sequences, but maintains tractability by
constructing multi-sequence alignments from pair-
wise comparisons. The algorithm finds the multiple
alignments using a greedy approach and has simila-
rities to both CLUSTAL and CONSENSUS, but the core
algorithm assures that the pairwise alignments are
optimized for both sequence and structure conserva-
tion. The choice of scoring system and the method of
progressively constructing the final solution are im-
portant considerations that are discussed. Example
solutions, and comparisons with other approaches,
are provided. The solutions include finding consensus
structures identical to published ones.

INTRODUCTION

Locating sequence as well as structure motifs in a set of RNA
sequences is of general interest. For example, all of the methods
that do structure prediction based on phylogenetic data require
that the alignment of the sequences be known in advance. That
alignment process is usually done by hand and is one of the
biggest problems in using that approach. The method presented
here promises to automate the alignment and structure determina-
tion process, and can be used on normal phylogenetic data, on
SELEX (1) type data where the RNAs have been selected in vitro,
and when one has a collection of genes that are coordinately
regulated at the translational level. In contrast to many other RNA
folding and aligning methods, we present a method which
performs local structural alignment of RNA sequences. The work
here is an extended version of (2).

Much work has been put into sequence alignment, e.g. (3,4),
including methods to align multiple sequences, e.g. (5–9), but
RNA sequences are often conserved more in their structure than

in their sequence, so alignments of them based solely on sequence
conservation are usually incorrect. There has also been much
work on RNA secondary structure prediction, for example
through free-energy minimization of structures (10,11). But these
methods work on single sequences and are not generally reliable
enough to accurately predict the structures of entire sets of RNA
sequences. There is a method to build a multiple alignment based
on structure predictions of individual sequences (12), but this
ignores the sequence component of the alignment. Simulated
annealing has also been applied to the problem of aligning
multiple RNA structures (13) and to fold individual sequences
(14). Also a genetic algorithm has been applied to fold individual
sequences (15). It is generally agreed that comparative methods
are the most reliable for determining the structure of a set of
related RNA sequences (16,17). However, those methods require
that the alignment be known in advance. If reasonably good
alignments can be obtained, a very effective method is an iterative
procedure that uses the alignment to predict the structure, then
refines the alignment based on the structure, and repeats the
process until no further improvement is seen. However, the actual
use of such methods are not very automated and usually require
the careful attention of an expert to attain the final resulting
alignment. Perhaps the most promising automated approach is the
use of stochastic context-free grammars (SCFG) (18,19) which
perform global alignment considering both sequence and struc-
ture conservation. Eddy et al. (18) even show how this method
can be used to discover the structure model that is common to the
set of sequences. However, these methods do not work well on
local alignments. This is the problem we are most interested in,
where the conserved motifs represent only a portion of the
available sequences. Such is usually the case with in vitro selected
RNAs, and also with regulatory regions in RNA. In fact, interest
in identifying regulatory regions in DNA sequences (20–22) has
motivated this work. The problem is more complicated because
the motifs being searched for contain structural, as well as
sequence, conservation, and also because it is imperative to allow
gaps in the alignment. If gaps are not required, then a simple
extension to the sequence alignment method can identify the
common motifs quite well (23).

With real data there is always the possibility that some of the
N sequences are not really related to the rest, but have been
included in the set erroneously, or for other reasons, for example
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that the N sequences are functionally related but fall into two (or
more) structural classes so that there is not a single motif that is
common to all of them. In general we want to identify M ≤ N
sequences that contain the most significant common motif. In our
approach that common motif will appear in the alignment of the
M sequences, and failure to get good alignments with the rest of
the sequences will indicate that they do not belong to the same
structural class. However, for N sequences, there are essentially
2N subsets of sequences, and it would not be practical to examine
all these subsets to identify the one with the most significant
common motif. Thus we include an approach in which poorly
aligned subsets are discarded.

In 1985 David Sankoff (24) published an algorithm to
optimally fold and align multiple RNA sequences. The main
limitation of his algorithm is that its time complexity is O(L3N) for
N sequences of length L. That makes it impractical for any but the
smallest problems. However, it is easily computed for two
sequences of moderate length. Therefore, we have adapted an
approach used in pairwise progressive alignment methods, such
as CLUSTAL (5,6), in which each step of the procedure requires
alignment of only two entities. Each entity can be either an
individual sequence or an alignment of sequences. We also use the
strategy of the greedy algorithm in CONSENSUS (21), of
maintaining many intermediate solutions so as to minimize the
likelihood of missing the optimal solution. While this approach
does not guarantee that we will find the optimal solution, as does
the Sankoff algorithm, it does have one advantage (besides
tractability) over that method, which is that it can locate the subset
with the most significant core structure.

We have simplified the basic Sankoff algorithm in two
important ways. His algorithm minimizes the total cost of the
alignment and, simultaneously, the energy of the structures.
Because we are specifically looking for local alignments, we
adopt the approach of the Smith–Waterman algorithm for local
sequence alignments (3). Therefore we maximize a score based
on a combination of sequence similarity and structure. For
convenience we choose to score the structure based only on the
number of base pairs, and not their stacking energies (10). This
change allows us to use the basic Sankoff algorithm to find the
highest scoring local alignment of the RNA sequences. (See
below for further details of the scoring system.)

The second major simplification reduces the time complexity
to O(L4), rather than the O(L6) for two sequences of the standard
algorithm. We do this by not allowing for branching structures.
We justify this approach by claiming that we do not expect our
program to identify the complete structural motif in a single pass,
but rather to give us a good ‘core structural alignment’ which can
be used to obtain the complete motif by existing methods. We
certainly expect that the motifs may contain branching structures.
They may even contain pseudoknots, and if that is true even the
complete O(L3N) Sankoff algorithm will not find them, nor will
SCFG methods. However, given a good alignment of a ‘core’
region of the common motif, an SCFG method can extend and
refine that to capture more of the motif. And maximum-weighted-
matching (MWM) methods can be used to identify pseudoknots
in the aligned sequences (25,26). The most difficult part of the
problem, given existing programs, seems to be identifying a good
candidate local alignment from which the total motif can be
identified. The O(L4) algorithm seems quite capable of that, and
its increased speed (compared to the O(L6) version) allows us to

do many more comparisons between different subsets of
sequences.

DATA SETS

We select four published data sets for investigation, all from
SELEX (1) experiments and for which a consensus structure has
been proposed. The first set (H1) of RNA was found to bind to the
human immunodeficiency virus type 1 rev protein, and consists
of three families of hairpin loops (27). The second set (H2)
contains a pseudoknot with specific affinity for HIV-1-RT. This
data set also contains erroneous sequences which have been
found to be retained by nitrocellulose filters in the absence of
protein (28). The third set (THEO) of RNA binds to the
bronchodilator theophylline and has a conserved sequence
pattern and a consensus structure consisting of a circularly
permuted and broken hairpin loop (29). In particular it has a
conserved CCU bulge. The fourth set (R17) is RNA ligands for
the bacteriophage R17 coat protein (30), which has characteristic
tetra-loops and requires an A-bulge in the stem. The length of all
the sequences is in the range of 30–50 nt, and the data set sizes
range from 13 to 36 sequences. For each data set we have used
only the variable part of the sequences. If we had included the
constant regions our program would simply have aligned by
them. Since, for some of the selected sequences, the common
motif overlaps the constant region, these will not be included in
the subset of sequences identified by the program. However, they
can easily be identified by later searching for the motif in the
entire sequence, including the constant region.

METHOD

The basic principles derived by Sankoff (24) are simplified and
extended to perform alignment between two collections (entities)
of already aligned sequences, merging them into a new collection
of sequences. We extend the 2-D dynamic programming to 4-D
dynamic programming which includes folding and show that this
is similar to the 2-D case and can be done with a similar score
matrix. Finally we add the feature of pruning away low score
collections (filtering) from the set of all collections of aligned
sequences. The collections with highest scores are the ones used
to suggest consensus structures for the sequences within the given
collection.

From 2-D to 4-D dynamic programming for comparing
two sequences

For comparison with our new algorithm, we briefly describe the
algorithm of Smith and Waterman (3) for finding the maximum
scoring local alignment between two sequences, a� = (a1 ...., an)

and b
�

 = (b1, ...., bm). This algorithm essentially comprises the
alignment part of our algorithm. We are given a ‘scoring matrix’,
Aab, which defines the similarity between any two bases, a and b.
The scoring matrix also includes scores (or penalties) for aligning
a base with a gap, Aa– and A–b. (To simplify the notation, in the
following we write Aik to mean Aaibk

, and similarly for gaps, Ai–

to mean Aai�
.) The highest scoring alignment of subsequences is

then found using a matrix H, initialized as

Hi0� H0k� 0,� 0� i � n and 0� k � m.
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Subsequent elements of H are determined by the following
recursive relationship:

Hik � max
�

�
	

�

�

Hi�1,k�1� Aik ,

Hi�1,k� Ai� ,

Hi,k�1� A�k ,
0

�

�



�

�

1

[This formulation assumes a constant gap penalty. A more general
formulation, allowing arbitrary gap penalties, is similar, but the
complexity of the algorithm increases. We actually use an affine
gap penalty, with different costs for opening and extending gaps,
which does not increase the complexity of the algorithm(31).] Hik
is the maximum similarity of two segments ending at ai  and bk.
The maximum similarity subsequences end at the maximum
element of H, and ‘backtracking’ to zero then provides the
subsequences and their alignment (3). Constraints on the values
of Aik are that, on average for random sequences, Aik should be ≤
0, and Ai– and A–k should be negative and at least equal to the
largest difference between a match (i.e. Aii ) and a mismatch (i.e.
Aik, i ≠ k).

Another helpful comparison to our method is the sequence
folding algorithm of Nussinov and Jacobson (10). The basic idea
of folding is to find the maximum number of basepairs possible
for any folding of an arbitrary subsequence (ai , ...., aj ). This is
done by testing aj ’s ability to pair with any base ak with i ≤ k ≤
j – 1. This folding allows for branching structures, and the
optimal fold is found from the following recursion:

Mij � max	
�

�

Mi(j–1)

M(i�1)(j–1)� 1 if i and j pair.
maxk { Mi(k–1)�Mkj}



�

�
2

in which each element in the matrix M is a subsequence of a single
sequence. As the algorithm proceeds the maximum number of
basepairs for the smaller subsequences has already been com-
puted. The maximal Mij  then provides the configuration contain-
ing the most basepairs. This algorithm allows for branching
configurations, because of the last line (i.e., the maxk compari-
sons). By leaving out that line we do not allow for branching
structures and we reduce the complexity from O(N3) to O(N2). As
described above, we assume this faster approach will still find the
most significant core structure, and that the remainder of the motif
can then be identified by existing methods.

We may now extend the ideas to finding the best subsequence
alignment between two sequences, allowing for conserved
basepairing within the two subsequences. Formally, we find the
best alignment of the subsequences (ai , ...., aj ) and (bk, ...., bl ), in
which the score of the alignment includes terms for sequence

similarity between a� and b
�

 and basepairing within a� and b
�

 that
is conserved at aligned positions. Whereas the Sankoff (24)
algorithm minimizes a combination of alignment cost and
basepairing energy, we maximize the alignment similarity and the
number of basepairs that can be simultaneously formed in both
sequences. We define a scoring matrix, Sij,kl , over all quadruples
of bases, including gaps. Details of the scoring matrix are
provided below, but letting Dij,kl  denote the best score of the
subsequences (ai , ...., aj ) and (bk, ...., bl ), then given any scoring
matrix and the constraint of non-branching structures, the

maximum scoring subsequence alignments can be obtained from
the following recursion:

Dij ,kl � max

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

	

�

�

D(i�1)(j–1),(k�1)(l–1)� Sij ,kl, (a)

Di(j–1),(k�1)(l–1)� S–j,kl,
D(i�1)j,(k�1)(l–1)� Si–,kl,

D(i�1)(j–1),k(l–1)� Sij ,–l,

D(i�1)(j–1),(k�1)l � Sij ,k–,

(b)

D(i�1)(j–1),kl � Sij ,– –,
Dij ,(k�1)(l–1)� S– –,kl,

(c)

D(i�1)j,(k�1)l � Si–,k–,

Di(j–1),k(l–1)� S–j,–l,
(d)

D(i�1)j,k(l–1)� Si–,–l,
Di(j–1),(k�1)l � S–j,k–,

(e)

D(i�1)j,kl � Si–,– –,

Di(j–1),kl � S–j,– –,
Dij ,(k�1)l � S– –,k–,

Dij ,k(l–1)� S– –,–l

(f)

3

The maximal Dij,kl  provides the most similar subsequences
between the two sequences. One difference between this
recursion and that of H, above, is that there is no zero value. This
is because the matrix D indicates both ends of the alignment, ai
with bk and aj  with bl , and also because we have to allow for
negative values occurring within the complete alignment. For
example, a hairpin loop might have no similarity between the two
subsequences, and therefore have a negative score by itself, yet
be contained within the overall best alignment. Since the
recursion progresses ‘outward’ from the hyper-diagonal of the D
matrix, those negative values must be kept in order to know the
true score of the complete alignment. The similarity to the scoring
scheme in the 2-D case is clear. In the 4-D case, each cell of the
matrix has 15 neighbors (24 – 1 ‘corners’) along which the
alignment can proceed. In the 2-D there are only three (22 – 1
‘corners’). The letters (a)–(f) to the right of the equation separate
them into different classes, depending on the number and
distribution of gaps that are added to the alignment. One example
from each class is shown in Figure 1. Only class (a) gives rise to
a structural contribution, and then only if i is complementary to
j and k is complementary to l. This is because we only score
basepairs that are conserved in both sequences.

From the definition of Sij,kl  (see next section) it follows that we
only need to take the maximum of cases (a), (d) and (f) as the
remaining cases can be constructed from these [assuming that the
alignment of two –’s (gaps) gets a score of 0]. For example, an
alignment of class (b) can be obtained by an alignment of class (f)
followed by an alignment of class (d). This reduces the scheme
to only seven cases.

The recursion in Figure 1 (equation 3) is systematically applied
to all possible combinations of i, j, k and l in the two sequences
by considering a window of varying length along each sequence,
as illustrated in Figure 2. Since the subsequence comparisons in
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Figure 1. Inside the vertical dashed bars is the section that is already structurally
aligned, and corresponds to the D portion of the right side of equation 3. The
bases listed outside of the dashed bars are the new ones being aligned, with each
other or with gaps, and the combined score from all of them is included in the
S portion of the recursion equations. The cases illustrated as (a)–(f) correspond
to the first example in each class listed in equation 3.

larger windows use the results of comparisons in smaller
windows, each comparison score is stored for later use in the
matrix Dij,kl . As in other dynamic programming approaches, upon
completion of the recursive computation of scores, the maximum
element in D is the starting point for retracing steps. However,
now the backward trace continues until the interior of the
subsequence is found; that is, until the previous subsequence
consists of a single base.

The scoring matrix for aligning and folding

Consider the score matrix for structurally aligning a sequence a�

against a sequence b
�

. As before, we reserve the indices i and j for
respective positions in sequence a�, and the indices k and l for

respective positions in sequence b
�

. For structural alignment
between a and b we construct the total score for each quadruplet
(i,j,k,l) from two independent contributions, one for sequence

Figure 2. The scenario of computing the score between all size windows
against all size windows. Here the sliding window of sequence a is of size Wa
= 4, and for sequence b, Wb = 6.

alignment and one for alignment of basepairs. We define the score
matrix S to be the sum of matrices A (alignment) and B
(basepairing)

S = A + B 4

which can be written in a simple way using the classic alignment
matrix and a matrix defining weighted base complementarity.
The score S is then a list of scores for substituting any pair of bases
for any pair of bases (including gaps). The program allows one to
define easily the scoring matrix to be used. We have found the
following scores to work well, and those have been used for all
of the examples in this paper (see equation 5 below): 

This matrix gives a score of +4 for basepairing and alignment
matches, and a score +3 for any other basepairing without
alignment matches (i.e. for compensating changes). Those are the
two highest scores obtainable. All other scores are derived from
considering only the matching and mismatching of the aligned
positions. Note that the computation of score between two given
subsequences for which the respective positions are considered
fixed (gaps might have been included), may be done by first
computing the score for sequence alignment, then by computing
the score for structure alignment.

To construct the alignment contribution of this 25 × 25 matrix,
we first generalize the classic alignment approach to include
alignment of any two bases against any two bases (including
gaps). In the standard method of  aligning two sequences one
defines a similarity of substitutions for some position i in the one

5
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sequence and some position k in another, listed in a score matrix
(called A in the previous section):

A0 �		




�

1
–3
–3
–3
–4

–3
1

–3
–3
–4

–3
–3
1

–3
–4

–3
–3
–3
1

–4

–4
–4
–4
–4
0

		

�




k

A

C
G

U
–

i A C G U –

6

where the gap penalty has been included as the dash (initiation
and elongation gaps are simply represented by two different
matrices). These values are all smaller than those used in Smith
and Waterman (3). That is because we are adding a ‘bonus’ for
basepaired positions, and still want to maintain an average
negative score for random alignments. We expand this substitu-
tion matrix to include all possible pairs for positions (i,j) in the one
sequence and positions (k,l) in another sequence by adding the
cost (A0)ik for aligning i to k to the cost (A0)jl  for aligning j to l,
i.e.,

Aij,kl  = (A0)ik + (A0)jl 7

which constitute the elements of A.
When constructing the score matrix for basepairing one might

simply put values directly into the 25 × 25 matrix. However, it can
also be constructed from two simple components, a matrix of
complementary bases and another type of score matrix. First we
define the complementary weight matrix by

C � �C� if j–i � d and l–k � d

0 otherwise 8

where d is the minimal allowed loop size (typically 3), and where

C� �		




�

0
0
0
1
0

0
0
1
0
0

0
1
0
1
0

1
0
1
0
0

0
0
0
0
0

		

�




j

A

C
G

U
–

i A C G U –

9

accounts for the basepairings. In this example we weight the
basepairing G·U the same as any regular Watson–Crick basepair.
To construct the score matrix B for basepairing, we require that
Cij Ckl = 0 implies that Bij,kl  = 0. Inspired by the case of alignment
one can define a basepairing alignment matrix ζ providing the
score of replacing a basepair in one sequence with a basepair in
another. Then we obtain

Bij ,kl � CijCkl
� �ik,jl,  where � � �25

5
9�

i�k i�k

j�l

j�l
10

where the square root normalizes Cij Ckl. The matrix ζ must be
symmetric, and can be interpretated as the cost of aligning i to k
and j to l, when both i and j, as well as k and l basepair. Thus it is
sufficient to define ζ only when i is complementary to j and k is
complementary to l. Our choice of values serves to give a much
lower score for basepairing when there are also sequence
alignment matches because these already get a high score. Scores

Figure 3. The scenario of computing the score between all size windows
against all size windows for two collections of aligned sequences. As before the
sliding window of sequence a is of size Wa = 4, and for sequence b, Wb = 6.

for non-matching basepairs are higher because they represent
compensating changes where the structure is maintained when
the sequences change. The off-diagonal values occur because
G·U basepairs allow complementarity to be maintained when
only one position changes. The values in ζ cause these to be
treated as compensating changes in the final S matrix.

Using the values listed in equations 7 and 10 we obtain the total
score matrix for S = A + B listed above, equation 5.

Multiple sequence comparison

We now expand the 4-D dynamic programming algorithm to
include alignment between two entities or collections of se-
quences, which do not overlap in the sequences they contain.
Consider the case of aligning a collection of p aligned sequences
to a collection of q aligned sequences. The aligned columns
within each separate collection remain unchanged, but insertions
and deletions can occur between the two sets. The score for the
alignment is the sum of all the pairwise scores among all r = p +
q sequences. However, we only add in the structural component
of the score if every sequence in both sets is complementary at the
aligned position pairs. As for the two sequence comparisons, a
similar score matrix formalism for multiple sequence comparison
has been constructed, but not discussed here. Figure 3 illustrates
the computation of the score between two windows from the two
collections. The computation is similar to what is done in (6,7).

As extra features we include different penalties for initiation
and elongation of gaps. Also we include an optional basepair
elongation factor, ε, which scores basepairing such that stacking
is favored. When ε = 0 the same number of basepairs throughout
an alignment will give the same score no matter where the
basepairings are located. When ε > 0 basepairs are scored Bij,kl  +
εc, where c is the number of nested stacked pairs up to, but not
including (i,j) and (k,l).

The greedy algorithm

Here we briefly outline the basic ideas of applying the greedy
algorithm to build up multiple alignments. This has similarities to
CLUSTALW (6) and CONSENSUS (21). For a set of N different
sequences there are 2N – (N + 1) ≈ 2N different subsets of two or
more sequences. In order to find the best M ≤ N aligned
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sequences, the best scores from many different subsets will have
to be compared.

The raw pairwise greedy algorithm is as follows. First all
individual sequences are compared to each other, then all the
pairwise alignments are compared to all the individual sequences,
such that no sequence appears more than once in each compari-
son. The next greedy step would be to align all the triplet
alignments to the individual sequences, and compare all the
pairwise alignments to each other, still such that no sequence
appears more than once in each final alignment. The algorithm
may then be continued until all sequences have been compared in
a final alignment. This approach is exponential in time, requiring
O(L4NN) time. However, many of these comparisons/alignments
are redundant and many may also be of such low score that they
are unlikely to contribute to the final aligned subset. We can save
many comparisons by eliminating alignments that appear unpro-
ductive.

Further work is ongoing to optimize the greedy strategy. For the
results presented in this paper we have used two means of limiting
the number of comparisons. First, one entity is always a single
sequence. In the notation introduced above, alignments of r
sequences are made by aligning one sequence with r – 1
sequences. Second, after the initial alignment of all pairs of
sequences, we only store a fixed number of the best scoring
alignments, typically 30. For example, we compare each single
sequence to each aligned pair of sequences to generate alignments
of three sequences. But we only keep the 30 highest scoring
alignments for comparison with single sequences to generate the
alignments of four sequences. This approach has a time
complexity of O(L4N4).

Finally, in selecting the ‘best’ alignment of M ≤ N sequences,
there is a problem that scores increase with the number of
sequences, and so different sized sets are difficult to compare. We
need stopping criteria that indicate the largest set of well-aligned
sequences occurs at some particular round. As a first approach we
look at a few best alignments of each round r, and compare score
versus alignment length. We find a trade off from which the final
alignment is chosen by plotting the scores as a function of r, and
stopping at the round for which the rate of change decreases, i.e.
at the empirical inflection point. Then we look at the five best
scored alignments of r and r – 1 sequences. Work is ongoing to
make the selection of the ‘best’ alignment more rigorous and
more automated.

RESULTS

For comparison, we attempt to find the alignment for each data
set using three publicly available programs. Depending on the
data set, and type and amount of conservation, these programs
perform with varying degrees of success. None of them is
consistently able to identify the structural motif common to the set
of sequences as well as our program FOLDALIGN, an imple-
mentation of the 4-D alignment and greedy schemes presented
here.

CLUSTALW

We performed multiple alignment of the SELEX data by using the
program CLUSTALW (5,6) with default parameters. We used the
full dynamic programming alignment between two sequences for

the progressive alignment (6,32) performed by CLUSTALW.
Since this program performs multiple alignment based on
sequence conservation alone, we would not expect it to identify
structurally conserved regions. As expected, it does fairly well on
data sets with significant amounts of sequence conservation. For
example, it properly aligns the conserved hairpin loop, and the
conserved bulged A, in the R17 data (33), but fails to align
consistently the conserved stem region. It also adds spuriously
aligned bases near the 5′ end of the sequences that are not part of
the functional motif. The H2 data (28) also contain significant
sequence conservation in the first stem of a pseudoknot, and
CLUSTALW aligns that region well, although with no suggestion
of the conserved structure. The THEO data (29) contains
sequence conservation, but it is misaligned in the two subclasses.
The H1 data (27) has less sequence conservation than the others
and is not well aligned by CLUSTALW.

COVE: covariance models of RNA

The COVE program by Eddy and Durbin (18) finds tree
representations of secondary structures by applying a dynamic
programming algorithm to find pairwise mutual information
scores of all nucleotide positions. A covariance model is then
derived from the resulting optimal tree representation of the
structure. The algorithm is also similar to proposed stochastic
context-free grammar models developed by the Haussler group
(19,34). COVE performs global alignment on a collection of
sequences and has been shown to perform well on tRNA for
which a global (consensus) structure is defined. As options in the
program one can either construct a model from a set of sequences
with known structure and apply it to find structures for new
sequences, or utilize it to suggest a common structure for a set of
sequences. Additional features, like using alignment of the
sequences, are also available. It is well known that it is hard to find
local features using a global alignment procedure, so we did not
expect this package to perform well on the SELEX data sets, and
it did not. Using the same data sets as for CLUSTALW we did not
find any strong signals for consensus structures, not even if we
used the CLUSTALW alignments as input to the program. The
multiple structural alignment method presented here can be used
to construct a core model which can then be used by COVE to
extend and refine that model.

Tools from the Vienna RNA package

The Vienna RNA package by Hofacker et al. (12) includes a
program RNAfold to find the minimum free energy structures,
and a program RNAdistance to find the distance between two
structures in terms of the smallest cost along the editing path when
representing the structures as trees. The RNAfold program is
based on the work in (11,35,36), and the RNAdistance program
on the work in (37–39). We folded each sequence in the data sets
and found that many of the structures resembled the published
structures, when neglecting the H2 pseudoknot. Using RNAdis-
tance to pairwise compare the structures and appropriate cut-off
scores to select reasonable comparisons, we found a number of
sequences with similar structures (in the respective data sets)
were clustered together. However, we did not find a strongest
common structure, or the consensus structure for the respective
data sets.
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Table 1. The strongest aligned class of the H1 data set

GGAUUUGAGAUACAC-GGAA-GUGGACUCUCC 17

GCC-UUGAGAUACACUAUAUAGUGGAC-CGGC 5

GGC-UGGAGAUACAAACUAU-UUGG-CUCGCC 4a

AUU---GAGAAACAC-GUUU-GUGGACUCGGU 6b

ACC-UUGAGGUACUC-UUAA-CAGG-CUCGGU 11

GCA-UUGAGAAACAC-GUUU-GUGGACUCUGU 6a

GAA-UUGAGAAACAC--UAA-CUGGCCUCUUU 14

(((.........((........)).....))) (publ.)

(((...(.(...((........))..).)))) (FOLDALIGN)

The parentheses indicate basepairing. The numbers refer to the published se-
quence labels. Only the aligned part of the sequences are shown

Table 2. The strongest aligned class of the H2 data set

CCAGAGGCCCAACUGGUAAACGGGC 1.17

CCG-AAGCUCAACGGGAUAAUGAGC 2.4a

CCG-AAGCCGAACGGGAAAACCGGC 1.3a

CC-CAAGCGC-AGGGGAGAA-GCGC 1.6

CCG-ACGCCA-ACGGGAGAA-UGGC 1.8

CCGUUUUCAG-UCGGGAAAAACUGA 1.1

CCGUUACUCC-UCGGGAUAAAGGAG 2.11

CCGUAAGAGG-ACGGGAUAAACCUC 2.7a

CCG-UAGGAG-GCGGGAUAU-CUCC 2.10

CCG--UGCCG-GCGGGAUAU-CGGC 1.9b

CCG-AACUCG-ACGGGAUAA-CGAG 2.1b

CCG--ACUCG--CGGGAUAA-CGAG 2.12

[[....((((....]].....)))) (publ.)

......((((...........)))) (FOLDALIGN)

The parentheses indicate basepairing (and the square brackets for pseudoknot).
The numbers refers to the published sequence labels. Only the aligned part of
the sequences are shown.

Table 3. FOLDALIGN for the THEO set

AUACCAGUGACAACU-CUCGAG-AUCACCCUUGGAAGTCT8-6,9

AUACCAUCGUGUAAG-CAAGAG-CACGACCUUGGCAG TCT8-5

AUACCAACUA---CUCUCAC-A-AUAGUCCUUGGAAG TR8-8

AUACCAACGG----C-AUAU-UUGCUGUCCUUGGAAG TR8-14

AUACCAACAG----C-AUAU-UUGCUGUCCUUGGAAG TCT8-1,10

AUACCAGCAU----C-GUCU-U-GAUGCCCUUGGCAG TCT8-4,8

...(((((((..............))))...)))... (publ.)

.(.(((((((....(.(....).)))))...))).). (FOLDALIGN)

FOLDALIGN

We determined structural alignments for each of the data sets and
compared them to the published consensus structures.  For each
of the investigated data sets we did find the subset with the
strongest common structure, matching what has been published.
The first data set, H1 (27), consists of 20 sequences and has been
assigned three structural classes, the classes all containing the
same structural elements. The largest class consists of 10
sequences, however three of them use the constant SELEX
regions (see ref. 1) in the basepairing (which were not included

in our data sets), so we would not expect to find more than seven
of them with conserved structure. For those seven sequences
FOLDALIGN finds the proper alignment and consensus struc-
ture matching the published one. This is shown in Table 1. The
additional structure identified by FOLDALIGN (Table 1), but not
included in the published consensus structure, is included in the
consensus structure for the largest class (figure 3 of ref. 27).
FOLDALIGN has captured the interacting bases in an internal
loop. Furthermore FOLDALIGN succeeds in merging the two
strongest classes, missing one sequence in the largest class and
getting only one sequence wrong in the alignment (not shown).
All of the sequences  in the third class utilize part of the constant
region in their structures, and so cannot be aligned properly with
the other sequences when using only the variable region.

Even better results are obtained for the data set H2 (28). As
mentioned this data set contains a pseudoknot, two overlapping
stem–loop regions, and therefore violates the knot constraint in
the dynamic programming. One stem region is highly conserved
in sequence, and the other has almost no sequence conservation.
FOLDALIGN aligns the sequence conserved regions based on
their sequence alignment, but at the same time aligns the other
stem region which is only conserved in structure (see Table 2).
This is a good example of the application of the method. Programs
like MWM (25,26) could refine the alignment to identify the
entire motif, including the pseudoknot.

Table 4. FOLDALIGN for the R17 set of the sequences which have at least
six basepairs in the stem

UGCGCACCAUCAGGGCGU 12

AAUGCACCAUCAGGGCAU 6

AUGUUACCAUCAGGAACA 27

UGCAGAGGAUCACCCUGC 24

AUGUCACGAUCACGGGCA 17

AGUAGAGGAACACCCUAC 32

AUUAGAGGAUCACCCUAG 25

UAUAGAGCAUCAGCCUAU 21

AAGAUAGCAUCAGCAUCU 28

.((((.((....)))))) (publ.)

.((((.((....)))))) (FOLDALIGN)

Table 5. FOLDALIGN for the R17 set of the sequences which have at least
five basepairs in the stem

CUCACCAUCAGGGGG 3

CUCACCAUCAGGGGG 4

AGGACCAUCAGGCCU 18

CGCACCAUCAGGGCG 12

UGCACCAUCAGGGCA 6

GUUACCAUCAGGAAC 27

CAGAGGAUCACCCUG 24

GUCACGAUCACGGGC 17

UAGAGGAACACCCUA 32

UAGAGGAUCACCCUA 25

UAGAGCAUCAGCCUA 21

GAUAGCAUCAGCAUC 28

(((.((....))))) (publ.)

(((.((....))))) (FOLDALIGN)
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Figure 4. The logos for the data. The symbols for sequence alignment are A, C, G, U and –. The letter displaying the mutual information between basepaired positions
is M. The sequence-structure logos are for (a) the data set H1, (b) the data set H2, (c) the data set THEO and (d) the data set R17. Only positions with positive information
content are shown. The letters ‘a’ and ‘b’ indicate basepairing for respective regions. For the data set H2 we inserted the known pseudoknot for illustration.

The third data set, THEO (29), consists of two structural classes
which are circular permutations of each other. FOLDALIGN
identifies the proper motif from the largest class, getting the
alignment exactly right for six of the eight sequences (see Table 3).
The two remaining sequences contain the shortest stems, only two
basepairs in one case, and require the most gaps for proper
alignment. The second class could not be aligned with the first due
to the circular permutation, but their common structure should be
identifiable if they are treated as a separate class (not tested).

The final set, R17 (30), consists of 36 sequences. For many of
these, part of the structural motif is contained in the constant
region of the sequence, and so is not available to the program for
alignment. However, we obtained a perfect alignment for the
subset of nine sequences that have at least six basepairs in the stem
(Table 4). We also found a perfect alignment for 12 of 16

sequences with at least five basepair stems (Table 5). Alignment
of larger subsets are nearly correct, although they do contain a few
misaligned sequences. In general, for this data set and the others,
the identification of subsets of sequences with conserved core
structures should be enough information to extend and refine the
complete motif utilizing existing programs mentioned above.

In the results presented above, a few different scoring matrices
were used, with essentially the same results for each. Work in
progress will further explore various scoring schemes and their
impact on resulting alignments. In real time the runs (alignments)
were completed in 4–12 h depending on the set sizes. The runs were
performed on a Silicon Graphics power challenge IRIX64 machine.

To display the sequence structure content of the alignments we
show four examples of structure logos (40) in Figure 4. The
structure consists of a sequence part, which is a generalized form
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of the Schneider and Stephens sequence logo (33). On top of this
sequence logo the mutual information between corresponding
basepairs has been displayed using the letter ‘M’.

CONCLUSION

We have presented a method to structurally align a set of RNA
sequences, as well as select the subsets containing the most
significant alignments. The method, which consists of 4-D
dynamic programming and a greedy algorithm for pairwise
comparison of sequences, was able to fully find the published
alignments of conserved motifs. The complete structure was not
always obtained, as in the case of the pseudoknot due to the
dynamic programming limitation. But the core alignment that is
obtained can be used by existing methods to complete the motif
identification. For this type of problem the method clearly
outperforms methods based on sequence alignment alone, or
structure based methods like stochastic context-free grammars and
free energy minimization, the latter including pairwise alignment
of structures only. We conclude that our method, to a very large
extent, can replace the alignments currently made by hand, or
provide significant hints to assist with ‘hands-on’ methods.

Further work is ongoing to improve the identification of the most
significant subset alignments. We are also working to fully
automate the detection of subclasses of motifs; the current version
is really only capable of finding the single most significant
common structure, but alignments based on disjoint subsets of the
sequences can be utilized for classification into distinct motif
classes. The method is also very amenable to parallelization, which
should greatly facilitate more extensive comparisons and analyses.
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